MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis.

نویسندگان

  • Junpei Takagi
  • Luciana Renna
  • Hideyuki Takahashi
  • Yasuko Koumoto
  • Kentaro Tamura
  • Giovanni Stefano
  • Yoichiro Fukao
  • Maki Kondo
  • Mikio Nishimura
  • Tomoo Shimada
  • Federica Brandizzi
  • Ikuko Hara-Nishimura
چکیده

Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially in plants. Here, we report a protein transport mutant of Arabidopsis thaliana, named maigo5 (mag5), which abnormally accumulates precursor forms of storage proteins in seeds. mag5-1 has a deletion in the putative ortholog of the Saccharomyces cerevisiae and Homo sapiens Sec16, which encodes a critical component of ER exit sites (ERESs). mag mutants developed abnormal structures (MAG bodies) within the ER and exhibited compromised ER export. A functional MAG5/SEC16A-green fluorescent protein fusion localized at Golgi-associated cup-shaped ERESs and cycled on and off these sites at a slower rate than the COPII coat. MAG5/SEC16A interacted with SEC13 and SEC31; however, in the absence of MAG5/SEC16A, recruitment of the COPII coat to ERESs was accelerated. Our results identify a key component of ER export in plants by demonstrating that MAG5/SEC16A is required for protein export at ERESs that are associated with mobile Golgi stacks, where it regulates COPII coat turnover.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sec16A defines the site for vesicle budding from the endoplasmic reticulum on exit from mitosis.

Mitotic inhibition of COPII-dependent export of proteins from the endoplasmic reticulum results in disassembly of the Golgi complex. This ensures ordered inheritance of organelles by the two daughter cells. Reassembly of the Golgi is intimately linked to the re-initiation of ER export on exit from mitosis. Here, we show that unlike all other COPII components, which are cytosolic during metaphas...

متن کامل

Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export

Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60-90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also k...

متن کامل

Plasmodium falciparum Sec24 marks transitional ER that exports a model cargo via a diacidic motif.

Exit from the endoplasmic reticulum (ER) often occurs at distinct sites of vesicle formation known as transitional ER (tER) that are enriched for COPII vesicle coat proteins. We have characterized the organization of ER export in the malaria parasite, Plasmodium falciparum, by examining the localization of two components of the COPII machinery, PfSec12 and PfSec24a. PfSec12 was found throughout...

متن کامل

Tango1 spatially organizes ER exit sites to control ER export

Exit of secretory cargo from the endoplasmic reticulum (ER) takes place at specialized domains called ER exit sites (ERESs). In mammals, loss of TANGO1 and other MIA/cTAGE (melanoma inhibitory activity/cutaneous T cell lymphoma-associated antigen) family proteins prevents ER exit of large cargoes such as collagen. Here, we show that Drosophila melanogaster Tango1, the only MIA/cTAGE family memb...

متن کامل

Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export.

Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 25 11  شماره 

صفحات  -

تاریخ انتشار 2013